61 research outputs found

    Modal stability of inclined cables subjected to vertical support excitation

    Get PDF
    In this paper the out-of-plane dynamic stability of inclined cables subjected to in-plane vertical support excitation is investigated. We compute stability boundaries for the out-of-plane modes using rescaling and averaging methods. Our study focuses on the 2:1 internal resonance phenomenon between modes that occurs when the excitation frequency is twice the first out-of-plane natural frequency of the cable. The second in-plane mode is excited directly, while the out-of-plane modes can be excited parametrically. An analytical model is developed in order to study the stability regions in parameter space. In this model we include nonlinear coupling effects with other modes, which have thus far been omitted from previous models of parametric excitation of inclined cables. Our study reflects the importance of such effects. Unstable parameter regions are defined for the selected cable configuration. The validity of the proposed stability model was tested experimentally using a small-scale cable actuator rig. A comparison between experimental and analytical results is presented in which very good agreement with model predictions was obtained. r 2008 Elsevier Ltd. All rights reserved

    An optimized tuned mass damper/harvester device

    Get PDF
    Much work has been conducted on vibration absorbers, such as tuned mass dampers (TMD), where significant energy is extracted from a structure. Traditionally, this energy is dissipated through the devices as heat. In this paper, the concept of recovering some of this energy electrically and reuse it for structural control or health monitoring is investigated. The energy-dissipating damper of a TMD is replaced with an electromagnetic device in order to transform mechanical vibration into electrical energy. That gives the possibility of controlled damping force whilst generating useful electrical energy. Both analytical and experimental results from an adaptive and a semi-active tuned mass damper/harvester are presented. The obtained results suggest that sufficient energy might be harvested for the device to tune itself to optimise vibration suppression

    Robust identification of backbone curves using control-based continuation

    Get PDF
    AbstractControl-based continuation is a recently developed approach for testing nonlinear dynamic systems in a controlled manner and exploring their dynamic features as system parameters are varied. In this paper, control-based continuation is adapted to follow the locus where system response and excitation are in quadrature, extracting the backbone curve of the underlying conservative system. The method is applied to a single-degree-of-freedom oscillator under base excitation, and the results are compared with the standard resonant-decay method

    Control-based continuation of unstable periodic orbits

    Get PDF
    Copyright © 2010 American Society of Mechanical Engineers (ASME)We present an experimental procedure to track periodic orbits through a fold (saddle-node) bifurcation and demonstrate it with a parametrically excited pendulum experiment where the tracking parameter is the amplitude of the excitation. Specifically, we track the initially stable period-one rotation of the pendulum through its fold bifurcation and along the unstable branch. The fold bifurcation itself corresponds to the minimal amplitude that supports sustained rotation. Our scheme is based on a modification of time-delayed feedback in a continuation setting and we show for an idealized model that it converges with the same efficiency as classical proportional-plus-derivative control

    Experimental continuation of periodic orbits through a fold

    Get PDF
    We present a continuation method that enables one to track or continue branches of periodic orbits directly in an experiment when a parameter is changed. A control-based setup in combination with Newton iterations ensures that the periodic orbit can be continued even when it is unstable. This is demonstrated with the continuation of initially stable rotations of a vertically forced pendulum experiment through a fold bifurcation to find the unstable part of the branch.Comment: 4 page

    Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models

    Get PDF
    In this study, an autochthonous variety of sweet cherry (Prunus avium L.), namely “Moretta di Vignola”, was processed to prepare extracts rich in polyphenols, which were characterized by high-performance liquid chromatography (HPLC) separation coupled to UV/DAD and ESI-MSn analysis. Then, a sweet cherry anthocyanin-rich extract (ACE) was prepared, fully characterized and tested for its activity against Parkinson’s disease (PD) in cellular (BV2 microglia and SH-SY5Y neuroblastoma) and in Drosophila melanogaster rotenone (ROT)-induced model. The extract was also evaluated for its antioxidant activity on Caenorhabditis elegans by assessing nematode resistance to thermal stress. In both cell lines, ACE reduced ROT-induced cell death and it decreased, alone, cellular reactive oxygen species (ROS) content while reinstating control-like ROS values after ROT-induced ROS rise, albeit at different concentrations of both compounds. Moreover, ACE mitigated SH-SY5Y cell cytotoxicity in a non-contact co-culture assay with cell-free supernatants from ROT-treated BV-2 cells. ACE, at 50 µg/mL, ameliorated ROT (250 µM)-provoked spontaneous (24 h duration) and induced (after 3 and 7 days) locomotor activity impairment in D. melanogaster and it also increased survival and counteracted the decrease in fly lifespan registered after exposure to the ROT. Moreover, heads from flies treated with ACE showed a non-significant decrease in ROS levels, while those exposed to ROT markedly increased ROS levels if compared to controls. ACE + ROT significantly placed the ROS content to intermediate values between those of controls and ROT alone. Finally, ACE at 25 µg/mL produced a significant increase in the survival rate of nematodes submitted to thermal stress (35 °C, 6–8 h), at the 2nd and 9th day of adulthood. All in all, ACE from Moretta cherries can be an attractive candidate to formulate a nutraceutical product to be used for the prevention of oxidative stress-induced disorders and related neurodegenerative diseases

    Causality in real-time dynamic substructure testing

    Get PDF
    Causality, in the bond graph sense, is shown to provide a conceptual framework for the design of real-time dynamic substructure testing experiments. In particular, known stability problems with split-inertia substructured systems are reinterpreted as causality issues within the new conceptual framework. As an example, causality analysis is used to provide a practical solution to a split-inertia substructuring problem and the solution is experimentally verified
    corecore